Direct Evidence for the Existence of Both Tautomeric Forms of 4-Hydroxypyridines in the Solid State

By F. P. BOER,* J. W. TURLEY, and F. P. VAN REMOORTERE (The Dow Chemical Company, Midland, Michigan 48640)

Summary Single-crystal X-ray diffraction studies have shown that 3,5-dichloro-2,6-dimethyl-4-hydroxypyridine exists in the pyridone (oxo) form in the solid, while tetrachloro-4-hydroxypyridine exists as the pyridinol (hydroxy) tautomer.

I.R. AND u.v. evidence¹ shows that 2- and 4-hydroxypyridines exist predominantly as pyridone tautomers and this is supported by the crystal structure of 2-pyridone.² We report the unexpected observation that tetrachloro-4-hydroxypyridine (I) exists in the solid as the pyridinol tautomer (a), whereas the closely related compound 3,5-dichloro-2,6-dimethyl-3-hydroxypyridine (II)³ is found as the pyridone in the crystalline state.

The primary evidence for this result is the location of the hydrogen atoms in the two crystal structures. Compound (I) forms O-H…N hydrogen bonds of length 2.740 Å, with d(O-H) = 0.93 Å, d(H...N) = 1.88 Å and the angle O-H…N of 153°. In (II), the hydrogen bonds are of the N-H…O type and of length 2.755 Å, with d(N-H) = 0.81 Å, d(H...O) = 1.96 Å, and the angle N-H…O = 167°. Errors in the hydrogen positions are of the order of 0.1 Å.) Different types of hydrogen-bonded chains occur in the two structures. In (II), the hydrogen bonds are nearly collinear with the carbonyl bonds [the angle $C = O \cdots N(H)$ is 174·7°] resulting in linear chains parallel to the *a*-axis. The crystal structure of (I) contains C-O(H)…N angles of 135·5° and helical chains generated by the *b*-glide of the space group.

The bond distances and angles (Table) also support the presence of hydroxy- and oxo-tautomers in the respective species. Chatar Singh⁴ has noted that, for six-membered rings, the internal angle at a nitrogen with an extra-annular hydrogen is significantly larger (greater than 120°) than at a

Selected bond distances and angles					
Distances	Compound (I)	Compound (II)	Angles	Compound (I)	Compound (II)
N-C(2)	1.330(6)	1.353(8)	C(2)-N-C(6)	116-6(5)	123.0(6)
C(2) - C(3)	1.364(7)	1.352(8)	$\dot{N-C(2)-C(3)}$	124.9(5)	118.3(6)
C(3) - C(4)	1·395(7)	1·446(9)	C(2) - C(3) - C(4)	118.5(5)	123·5(6)
C(4)-C(5)	1.402(7)	1.421(9)	C(3) - C(4) - C(5)	117.3(5)	113.0(6)
C(5)–C(6)	1.373(7)	1.351(8)	C(4)-C(5)-C(6)	119·2 (5)	123.5(6)
C(6) - N	1.336(6)	1.370(8)	C(5)–C(6)–N	123·4(5)	118·6 (6)
C(4) - O	1.321(6)	1.253(7)		()	()
C(2)–CH.		1·490(8)			
C(2)C1	1.726(5)				
C(3) - Cl	1.715(5)	1.738(7)			
C(5)-Cl	1.717(5)	1.733(6)			
C(5)-CH.		1.495(9)			
		- (-/			

TABLE

C(5)--Cl 1.717(5)nitrogen without an attachment (less than 120°). Here the angle C-N-C clearly suggest the presence of an N-H function in (II), and its absence in (I). In addition, the

> O(H) (I) X = CI(II) X = Me

C-O bond length in (II) (1.253 Å) approaches the value of

1.215 Å in aldehydes and ketones,⁵ while the 1.321 Å

distance in (I) is closer to 1.36 Å characteristic of C-O bonds in aromatic alcohols.⁵ Finally, the ring distances (Table) show that the localized valence structure (b) plays an important role in (II), whereas the bonds in (I) are generally similar to those of pyridine⁶ [N-C(2), 1.340; C(2)-C(3), 1.394; C(3)-C(4), 1.394).6

The intensities of 1797 [compound (I)] and 679 [compound (II)] unique reflections were measured on a 4-circle diffractometer using monochromatized Mo- K_{α} radiation. The crystal structure of compound (I) was solved by symbolic addition, and that of (II), where the molecules lie in the mirror planes at y = 1/4 and y = 3/4, by Patterson techniques. Each structure was refined by full-matrix leastsquares assuming thermal anisotropy for non-hydrogen atoms and including anomalous scattering coefficients for Cl. Final R factors were: (I); $R_1 = 6.5\%$, $R_2 = 8.2\%$ (1400 reflections above background); (II); $R_1 = 4.4\%$, $R_2 = 3.5\%$ (421 reflections above background).

Crystal Data: Compound (I); C_5HCl_4NO , M = 232.90, orthorhombic, a = 12.439(7), b = 12.775(6), c = 9.882(6) Å, $U = 1570.3 \times 10^{-24} \text{ cm}^3$, Z = 8, $D_x = 1.970$, space group Pbca, μ (Mo- K_{α}) = 14.3 cm⁻¹. Compound (II); C₇H₇Cl₂NO, M = 192.06, monoclinic, a = 6.795(9), b = 6.932(13), c = 8.746(15) Å, $\beta = 103.56(7)^{\circ}$, $U = 400.4 \times 10^{-24}$ cm³, Z = 2, $D_x = 1.593$, space group $P2_1/m$, μ (Mo- K_{α}) = 4·1 cm⁻¹.

We thank J. J. Flynn, jun., for assistance in growing and selecting crystals.

(Received, 25th February 1972; Com. 312.)

- ¹ A. R. Katritzky and J. M. Lagowski, Adv. Heterocyclic Chem., 1963, 1, 347-358.
- ² B. R. Penfold, Acta Cryst., 1953, 6, 591.
- ³ Compound (II) is the active ingredient in COYDEN (B) anticoccidials, The Dow Chemical Company, Midland, Michigan, U.S.A. ⁴ Chatar Singh, Acta Cryst., 1965, 19, 759, 767, 861.
 ⁵ L. E. Sutton, Chem. Soc., Special Publ., 1965, 18, S16s—S21s.
- ⁶ B. Bak, L. Hansen-Nygaard, and J. Rastrup-Andersen, J. Mol. Spectroscopy, 1958, 2, 361.